
Device Makers Blog News Tips & Tools Spotlight

Subscribe

The AVS Device SDK introduced a new framework to simplify integration tasks named Manufactory.
Manufactory makes it easier to add, remove, and customize SDK components without digging into the
core SDK code. Version 1.21 of the SDK now includes a preview application that demonstrates building
an Alexa application using Manufactory. This initial release of Manufactory gives you an idea of what's
to come in the next few SDK releases. It includes a preview sample application that will evolve over
time, and should stabilize by the summer of 2021. This blog outlines how Manufactory works, the
reasoning behind the changes, and provides a glimpse of future AVS Device SDK changes.

Evolution of the AVS Device SDK
Over the last three years, the SDK has grown significantly. Version 1.0, released in August 2017,
supported five capability agents and was less the 150k lines of code. Version 1.20, released in June 2020,
supports 14 Capability Agents and is over 480k lines of code. With this growth, we realized that we
needed to make customization and integration of the SDK easier.

The SDK is adaptable. You are free to add, remove, or customize components to suit your needs.
Currently, the SDK uses dependency injection to pass objects created by the application into the SDK
core. The default client consumes these objects and orchestrates the distribution throughout the SDK. In
version 1.20, the DefaultClient::create() function takes 58 input parameters. The application must create
and initialize all of these objects, which leads to increased complexity and integration challenges.

Increase Modularization through Componentization
The SDK consists of the following categories of components.

Core components, such as the Directive Sequencer and the Focus Manager, are essential for
Alexa interaction and should not be removed or modified.
Optional components, such as Smart Home endpoints or Display Cards, to implement features
you might not support on your device and can removed without disrupting the SDK's core
functionality.
External components, such as Alexa Calling and Messaging or Multi-Room Music, aren't
included by default and require special qualifications to be added.
Other features, such as media players, wake-word engines or authentication methods, have
several different implementations to choose from. The SDK provides sample implementations, but
you will likely need to customize or replace them for your finished product

Manufactory allows you to select which components you want to add to your device and simplifies the
task of adding and removing features or replacing the sample implementations. Componentization is a
cleaner way to customize device configuration and improves maintainability by making it easier to
upgrade core SDK components. For example, you can update the device SDK core components without
having to modify your application.

Customize Your Device with Manufactory
We started adding Manufactory to the SDK in version 1.20. With Manufactory, you don't need to know
the details of the component you want to use – you simply request one from Manufactory and use it.
Manufactory creates and initializes objects, handles dependencies and manages the lifecycle of these
objects. It automates and abstracts this logic from you, eliminating any complex logic required to
initialize components in the application. The diagram below illustrates the basic structure of
Manufactory.

Figure 1 Structure of manufactory

When you create a Manufactory, you pass it a component. A component is a collection of factories used
to create the objects supporting the application. Manufactory creates and manages these objects.

Manufactory exposes a get<>()method. The application can request an object by invoking get<>() with
the desired object type. To do this, Manufactory first checks its object cache to see if it has the proper
type to return. If it doesn't already have one in its cache, Manufactory invokes the appropriate factory to
create the object.

Implementing Manufactory to Manage Your Application

Managing AVS Device SDK components with Manufactory
Sam Schonstal Dec 01, 2020 Share:

Device Makers AVS Device SDK Alexa Voice Service

Blog_Header_Post_Img

* Business Email Address:

* Country:

Select...

* First Name:

* Last Name:

Submit

 Skill Builders Device Makers Solution Providers Products Programs Docs Blog

Anmelden �

© 2010-2021, Amazon.com, Inc. und Tochtergesellschaften. Alle Rechte vorbehalten.

Nutzungsbedingungen Dokumentation Foren Blog Alexa Developer Home

 German (Deutsch)

https://developer.amazon.com/en-US/blogs/alexa/device-makers
https://developer.amazon.com/en-US/blogs/alexa/device-makers/news
https://developer.amazon.com/en-US/blogs/alexa/device-makers/tips-and-tools
https://developer.amazon.com/en-US/blogs/alexa/device-makers/spotlight
https://github.com/alexa/avs-device-sdk
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html#capability-agents
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html#alexa-directive-sequencer-library-adsl
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html#activity-focus-manager-library-afml
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/endpoints.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/display-cards-overview.html
https://developer.amazon.com/en-US/docs/alexa/mrm/multi-room-music-sdk-overview.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/authorization.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/manufactory.html
https://developer.amazon.com/en-US/blogs/alexa/author.Sam-Schonstal
https://developer.amazon.com/en-US/blogs/alexa/tag.device-makers
https://developer.amazon.com/en-US/blogs/alexa/tag.avs-device-sdk
https://developer.amazon.com/en-US/blogs/alexa/tag.alexa-voice-service
https://developer.amazon.com/en-US/alexa/alexa-skills-kit
https://developer.amazon.com/en-US/alexa/devices
https://developer.amazon.com/en-US/alexa/solution-providers
https://developer.amazon.com/en-US/blogs/alexa
https://developer.amazon.com/alexa
https://developer.amazon.com/alexa/console/signin
https://developer.amazon.com/terms-and-agreements
https://developer.amazon.com/alexa/alexa-developer-documentation-welcome
https://forums.developer.amazon.com/spaces/23/index.html
https://developer.amazon.com/blogs/alexa
https://developer.amazon.com/alexa

1. To use Manufactory in your application, follow these steps
2. Provide a factory function for your object
3. Define a component
4. Add your factory to the component
5. Create a Manufactory using that component
6. Acquire objects from the Manufactory

Providing a Factory Function to Support Manufactory

To manage an object with Manufactory, the defining class must:

Implement the factory pattern with a static create function
Return a Standard lib std::shared_ptr or std::unique_pt
Input parameters must be of types that are accessible to the Manufactory

For example, this class provides a factory function that creates and returns a pointer to an Audioplayer.

⎘ Copy code

Note: I simplified the code in this blog for brevity. Some namespaces and declarations are removed.
The intention is to illustrate the principles of Manufactory. For accurate compliable code, see the AVS
Device SDK on GitHub.

Define a Component for Use by Manufactory

Manufactory relies on C++ templates for type checking and resolving dependencies. This means
Components must specify the C++ Types they export. A Component is a templated Type unique to the
Types in its declaration. When declaring a Component, specify all the Types the Component will export
to Manufactory—for example, the following SampleAlexaComponent is a unique Type of a Component
that exports an AudioPlayer, SpeakerInterface, UIManager, ConfigurationNode and an
AuthDelegateInterface.

⎘ Copy code

A factory must be available to the Component to create each of the declared types, or compilation will
fail. The Component can, however, hide some types. It can have factories for types used internally that
are not exported.

Resolving Dependencies Using Imports

You can build Components from other components, so a parent component can create objects and inject
them into the child components that need them. For this process, Components can specify Imports. These
imports can be used as input parameters to other factory functions, but they must be available from a
parent Component.

The following example shows an AuthorizationDelegateComponent that exports an
AuthDelegateInterface, but requires a CBLAuthRequesterInterface, ConfigurationNode, and
HttpPostInterface. The AuthorizationDelegateComponent can't be created independently, but it can be
included as a part of a parent component that can fulfill these import dependencies.

⎘ Copy code

Add Factories to Create Objects Exported by Your Component

class AudioPlayer {
public:
 static std::shared_ptr<AudioPlayer> createAudioPlayer();
};

SampleAlexaComponent = acsdkManufactory::Component<
 std::shared_ptr<AudioPlayer>,
 std::shared_ptr<SpeakerInterface>,
 std::shared_ptr<UIManage>,
 std::shared_ptr<ConfigurationNode>,
 std::shared_ptr<AuthDelegateInterface>>

AuthorizationDelegateComponent = acsdkManufactory::Component<
 std::shared_ptr<AuthDelegateInterface>,
 Import<std::shared_ptr<CBLAuthRequesterInterface>>,
 Import<std::shared_ptr<ConfigurationNode>>,
 Import<std::unique_ptr< HttpPostInterface>>,

The ComponentAccumulator class builds Components. It has functions to add various types of objects.
Each of these functions returns a ComponentAccumulator so they can be chained together. In the end, the
ComponentAccumulator is converted into a Component that is passed to Manufactory. The example
below shows a component that satisfies the exports declared by the SampleAlexaComponent declared
earlier.

⎘ Copy code

In this example, we create the SampleAlexaComponent Component. To do this, several different types of
factories and components are added together using the ComponentAccumulator. Descriptions of these
items are listed below.

 addPrimaryFactory() – Primary Factories are instantiated by Manufactory before anything else.
This occurs when the Manufactory is initially created. Here we add, AlexaClientSDKInit.
addComponent() – takes a component as an input parameter. The AudioPlayer and
speakerManager are required to satisfy exports declared by SampleAlexaComponent. The
acsdkShared component exports the ConfigurationNode and HttpPostInterface to meet the import
requirements for the AuthorizationDelegateComponent declared earlier.
addUnloadableFactory() – Unloadable factories are for objects that Manufactory can unload from
memory when all references to the pointer are released. The createCBLAuthRequestedInterface
exports the CBLAuthRequesterInterface, which is also needed by the
AuthorizationDelegateComponent.
addRetainedFactory() – Retained factories tell the Manufactory to keep that object alive as long
as the Manufactory is running. The UIManager should always be running.

Note that other 'add' functions are available to add non-shareable objects, object instances, and more. For
more details, see the AVS Device SDK on GitHub and the API references.

Creating a Manufactory for Your Application

To create a Manufactory, call the Manufactory create<>() method and pass in the component you wish to
use. The only catch is the Manufactory must declare all the Types it exports, and all those Types must be
available for export by the Component used to create that Manufactory. The declaration below is almost
identical to the Component declaration, except we chose not to export the authentication delegate.

⎘ Copy code

Use Manufactory to Acquire Objects
Manufactory creates and manages the objects defined in the components it houses. When the application
needs an object, it calls the appropriate templated get<>() function on the manufactory instance to
acquire a pointer to the object. Manufactory either returns a pointer to an existing object or creates a new
one—whatever is appropriate for that object type. In the example below, we acquired a pointer to an
instance of the UImanager and use that instance to configure notifications settings.

⎘ Copy code

Replace Components Using Manufactory

SampleAlexaComponent getComponent(initParams) {
 return ComponentAccumulator<>()
 .addPrimaryFactory(getAlexaClientSDKInit(initParams))
 .addComponent(acsdkAudioPlayer::getComponent())
 .addComponent(speakerManager::getComponent())
 .addComponent(acsdkShared::getComponent())
 .addComponent(acsdkAuthorizationDelegate::getComponent())
 .addUnloadableFactory(createCBLAuthRequesterInterface)
 .addRetainedFactory(UIManager::create);}

using SampleAlexaManufactory = acsdkManufactory::Manufactory<
 std::shared_ptr<AudioPlayer>,
 std::shared_ptr<SpeakerInterface>,
 std::shared_ptr<UIManage>,
 std::shared_ptr<ConfigurationNode>>

manufactory = SampleAlexaManufactory::create(SampleAlexaComponent);

uiManager = manufactory->get<std::shared_ptr<UIManager>>();

uiManager->configureSettingsNotifications(params);

https://github.com/alexa/avs-device-sdk
https://alexa.github.io/avs-device-sdk/

Back to Top

Manufactory allows you to pick and choose which components you want to use in your application. You
can start with the AlexaClientComponent in the Preview Alexa Client of the AVS Device SDK and add
or remove optional components. Some optional components are wrapped in an #ifdef tag in the Preview
Alexa Client, allowing addition of the component code with compiler flags demonstrating this flexibility.

It's also straightforward to replace an implementation. For example, you might replace the authorization
delegate to use an application-based authentication instead of the Code Based Authentication. To do this,
simply replace the factory method passed to addFactory(). As long as it supports the same AuthDelegate
interface, no other code in the application needs to change.

The only change required to support MyNewUIManager, other than writing MyNewUIManager, is
changing the factory passed to the component through the addRetainedFactory() method. Nothing else in
the application needs to change to adapt to the new implementation.

Maintaining Backwards Compatibility with the Sample Application
Manufactory is a significant change to the AVS Device SDK. We added some of these changes in version
1.20 of the SDK. To minimize churn over the next several releases, we added a preview client. The
Preview Alexa Client, found under avs-device-sdk/applications, gives you a sneak peek into the
Manufactory implementation. Note that the Preview Alexa Client will change dramatically as the
implementation evolves. Consider the preview client as an 'alpha' release for you to follow along. As of
this writing, it's not recommended to use the previewAlexaClient for production. If you want to build the
preview application in version 1.21, Run CMake as you usually would then run 'make
PreviewAlexaClient'.

Migrating to Manufactory

The current Sample Application relies on the default client. The 58 input parameters to the
DefaultClient::create()function are initialized in the sample application making the
sampleApplication.cpp file 1769 lines long. From version 1.20 going forward, this Sample Application
will not change much. We will only update the Sample Application to support new Alexa features. We
will not make any more changes to the Sample Application to support Manufactory. The changes to
support Manufactory are going to be made in the default client.

Figure 2 Legacy application

In the transition phase, there will be both a Sample application, and its replacement, Preview Alexa
Client. The sample application will behave the same way as the legacy application. However, the new
Preview Application will use Manufactory to initialize objects. It will pass the Manufactory to a new
overloaded create() function in the Default client, which will get the objects from the manufactory and
pass them to the rest of the application.

Figure 3 Transition phase

Ultimately, the sample app will be eliminated and default client will be replaced by a simpler ‘Alexa
Client’ with a single run() function taking one parameter, Manufactory. Manufactory will also be
available to the Application to allow access to objects for customization purposes and to interface with
any external device components.

Figure 4 Future Vision

Explore the Preview Alexa Client to Learn about Manufactory

Use the Preview Application to explore and follow along as the SDK evolves. While the actual
implementation of Manufactory is quite complex, using it is relatively straightforward. You simply pass
your objects to Manufactory through components and then use them. As we streamline the interfaces and
evolve the implementation, customizing the SDK will become even more manageable. Over the next
several releases, you will see additional changes to add modularization and customization to the SDK
until we stabilize the implementation in mid-2021. So, don't worry, you don't have to consume any of it
yet. The Preview Application is there for you to explore, and we will maintain the current Sample
Application as-is for all of 2021. The Preview Application will become the primary Sample Application
in 2022.

The AVS Device SDK team is dedicated to helping you easily build Alexa devices. We do this by
continuing to iterate on a robust solution that is reliable, customizable and easy to maintain. We look
forward to the creative and innovative ways you integrate Alexa into your products. Feel free to provide
feedback through your Amazon Point of contact, Github Issues or me @sschonstal.

https://github.com/alexa/avs-device-sdk/tree/master/applications/acsdkPreviewAlexaClient
https://github.com/alexa/avs-device-sdk/issues
https://twitter.com/sschonstal

Alexa Skills Kit

Alexa Skills Kit

Learn

Design

Build

Launch

Resources

Getting Started

Tutorials

Documentation

Developer Forum

Agencies and Tools

Alexa Voice Service

Alexa Voice Service

Learn

Design

Build

Launch

AVS Resources

Getting Started

AVS Device SDK

AVS API

Dev Kits for AVS

Connected Devices

Alexa Smart Home

Alexa Gadgets

Agreements

Agreements and Terms

Program Materials License Agreement

Amazon Developers Services Portal Terms
of Use

Blogs

Alexa Skills Kit Blog

Device Makers Blog

AWS Blog

Alexa Science

Support

Amazon Developer Support

Contact Us

Forums

Manage Email Preferences

Follow Us:

https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit/learn
https://developer.amazon.com/alexa-skills-kit/design
https://developer.amazon.com/alexa-skills-kit/build
https://developer.amazon.com/alexa-skills-kit/launch
https://developer.amazon.com/alexa-skills-kit/start
https://developer.amazon.com/alexa-skills-kit/tutorials
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://forums.developer.amazon.com/spaces/165/index.html
https://developer.amazon.com/alexa/agencies-and-tools
https://developer.amazon.com/alexa-voice-service
https://developer.amazon.com/alexa-voice-service/learn
https://developer.amazon.com/alexa-voice-service/design
https://developer.amazon.com/alexa-voice-service/build
https://developer.amazon.com/alexa-voice-service/launch
https://developer.amazon.com/docs/alexa-voice-service/get-started-with-alexa-voice-service.html
https://developer.amazon.com/alexa-voice-service/sdk
https://developer.amazon.com/docs/alexa-voice-service/api-overview.html
https://developer.amazon.com/alexa-voice-service/dev-kits
https://developer.amazon.com/alexa/connected-devices
https://developer.amazon.com/alexa/alexa-gadgets
https://developer.amazon.com/support/legal/da
https://developer.amazon.com/appsandservices/support/pml.html
https://developer.amazon.com/support/legal/tou
https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit
https://developer.amazon.com/en-US/blogs/alexa/device-makers
https://aws.amazon.com/blogs/aws/
https://www.amazon.science/tag/alexa
https://developer.amazon.com/support/
https://developer.amazon.com/support/contact-us?subjectCategory=ALEXA
https://forums.developer.amazon.com/spaces/165/index.html
https://build.amazonalexadev.com/preference-center.html
https://www.facebook.com/AlexaDevs/
https://twitter.com/alexadevs
https://developer.amazon.com/blogs/alexa/

